меню

Устройства защиты от импульсных перенапряжений

Добавлено 10 декабря 2014 года в 22:37, Ср

Источник: http://forum220.ru/dsp.php

В связи с широким распространением полупроводниковой и микропроцессорной техники в производстве и в быту, вопрос защиты электрических сетей до 1000 В от коммутационных и грозовых перенапряжений сегодня становится особенно актуальным.

Дорогостоящая техника, изготовленная с применением полупроводниковых элементов, имеет слабую изоляцию, и даже незначительные повышения напряжения способны вывести ее из строя.

В соответствии с принятой номенклатурой, ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений (УЗИП).

Принцип действия схож с принципом работы ограничителей перенапряжения (ОПН) и основывается на нелинейности вольтамперной характеристики защитного элемента. При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают 3 ступени защиты, каждая из которых рассчитана на определенный уровень импульсных токов и крутизны фронта волны.

УЗИП I - устройство 1-го класса устанавливается на вводе в здание и выполняет функцию первой ступени защиты от перенапряжений. Условия его работы наиболее тяжелые. Рассчитано такое устройство на ограничение импульсных токов с крутизной фронта волны 10/350 мкс. Амплитуда импульсных токов 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.

УЗИП II - применяют в качестве защиты от перенапряжений, вызванных переходными процессами в распределительных сетях, а также в качестве второй ступени после УЗИП I. Его защитный элемент рассчитан на импульсные токи с формой волны 8/20 мкс. Амплитуда токов находится в пределах 15-20 кА.

УЗИП III - применяют для защиты сетей от остаточных явлений перенапряжений после устройств первого и второго класса. Устанавливаются они непосредственно у защищаемого оборудования и нормируются импульсными токами с формой волны 1,2/50 мкс и 8/20 мкс.


Устройство. Устройства всех классов имеют схожее строение, различие заключается в характеристиках защитного элемента. Конструктивно, устройство состоит из неподвижного основания и съемного модуля. Основание крепится непосредственно к конструкциям распределительных шкафов на DIN- рейку.

Съемный модуль с помощью ножевых контактов вставляется в основание. Такая конструкция позволяет легко производить замену испорченного нелинейного элемента самостоятельно. В качестве нелинейного элемента применяют варисторы и разрядники различного исполнения. Их исполнение может быть одно-, двух- и трехполюсным, выбор зависит от количества проводов защищаемой сети.

Зарубежные производители оснащают свои изделия индикаторами срабатывания устройства, что позволяет визуально определить его исправность. В более дорогих моделях могут быть установлены терморасцепители, предотвращающие перегрев нелинейного элемента, не рассчитанного на длительное протекание токов.

Схема подключения. Для выполнения защиты от перенапряжения в электроустановках, токоведущие части намеренно соединяют с заземляющим контуром посредством элементов с нелинейной вольтамперной характеристикой.

В электроустановках до 1000 В для применения УЗИП обязательно наличие заземляющего проводника РЕ с нормируемым сопротивлением. Несмотря на то, что сами устройства рассчитаны на большие импульсные токи и напряжения, они не пригодны для длительного повышения напряжения и протекания токов утечки.

Многими производителями рекомендуется защищать УЗИП с помощью плавких вставок. Данные рекомендации объясняются более быстрым срабатыванием предохранителей в зонах импульсных токов, а также частыми повреждениями контактной системы автоматических выключателей при разрывании токов такой величины.

При выполнении трехступенчатой защиты от перенапряжений, устройства должны располагаться на определенном расстоянии друг от друга по длине провода. Например, от УЗИП I до УЗИП II расстояние должно быть не менее 15 м по длине соединяющего их провода. Соблюдение этого условия позволяет селективно отработать разным ступеням, и надежно погасить все возмущения в сети.

Расстояние между II и III ступенью 5 метров. При невозможности разнести устройства на предписанные расстояния, применяют согласующий дроссель, представляющий собой активно-индуктивное сопротивление, эквивалентное сопротивлению проводов.

Особенности выбора. Самым ответственным участком защиты от грозовых перенапряжений является ввод в здание. УЗИП на первом участке ограничивает самый большой импульсный ток. Ножевые контакты для УЗИП первого класса представляют наибольшую уязвимость устройства.

Импульсные токи амплитудой 25-50 кА сопровождаются значительными электродинамическими силами, которые могут привести к выскакиванию сменного модуля из контактов ножевого типа и лишить электрическую сеть защиты от перенапряжения, поэтому, в качестве первой ступени лучше применять УЗИП без съемного модуля.

При выборе защиты первого класса отдавать предпочтение лучше устройствам на базе разрядников. Изготовление варисторного УЗИП на импульсный ток более 20 кА - дело достаточно трудоемкое и затратное, поэтому, их серийный выпуск неоправдан.

Так, если изготовителем на варисторном устройстве указан номинальный Iimp более 20 кА, следует с осторожностью отнестись к такой покупке; возможно производитель вводит вас в заблуждение.

УЗИП с применением разрядника с открытой камерой представляет опасность при срабатывании, поэтому его применение обосновано в распределительных шкафах, где присутствие человека исключено, когда защищаемый участок находится в работе. Протекание импульсного тока по контактам разрядника неизбежно ведет к зажиганию дуги.

В момент горения дуги, раскаленные газы и брызги расплавленного металла могут нанести вред здоровью и жизни человека. Шкаф, в котором установлено УЗИП такого типа, должен быть выполнен из несгораемого материала, с уплотнением всех отверстий.

В качестве нелинейного элемента могут применяться также разрядники со схемой поджигающего электрода. С помощью дополнительного электрода можно регулировать момент пробоя искрового промежутка и открытия разрядника. Применение поджигающего электрода позволяет снизить уровень импульсного напряжения и согласовать работу УЗИП разного класса.

Однако если схема управления поджигающим электродом выйдет из строя, на выходе получится защита с неизвестной характеристикой, возможно, не гарантирующая не только правильную работу, но работоспособность вообще.

Вернуться к списку статей

Лучшие организации

Лучшие электрики

Новые файлы

Популярные файлы

Новые статьи

Новые уроки